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Given a system of time dependent ordinary differential equations, jr = fi(ct , c2 ,..., 
yi , yz ,..., t), where C~ are rate parameters, we simultaneously solve for both yi and a 
set of sensitivity functions, ay,/act, over all times t. These partial derivatives measure 
the sensitivity of the solution with respect to changes in the parameters cp . Often these 
parameters are not accurately known. An example is given from atmospheric chemical 
kinetics using constant as well as time varying (diurnal) rate parameters. For the purposes 
of this paper, our calculations considered both tirst- and second-order contributions to 
dy with respect to AC. It is found that second-order sensitivity terms can be highly 
significant, but tend to be too costly for present widespread application. 

I. IN~~00r~cnoN 

The need for systematic sensitivity analysis of large computational models is 
becoming increasingly apparent. This need is emerging as complex numerical 
models are increasingly applied for problem solving in numerious application 
areas that include atmospheric science, combustion physics and engineering 
(numerous types of applications), chemical laser studies, biological systems, and 
energy distribution and other socio-economic systems. Computational models 
can be based on algebraic equations, for static systems, and/or upon differential 
equations, for dynamic systems. Often, many of the parameters required for the 
solution of such systems are not known with great accuracy, nor are the parameter 
statistics always well known. The object of a sensitivity analysis is to systematically 
determine the effect of uncertain parameters on system solutions. This is useful 
in connection with both the sensitive and the insensitive factors in a system. For 
the former, one can measure the levels of effort and attention that may have to be 
devoted to various elements to which the system is sensitive. For the latter, it is 
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usually desirable to eliminate insensitive factors from model structures for com- 
putational reasons-provided it can be done with knowledgeable confidence. 

This article can be viewed either independently or as a logical complement to 
an earlier article by Gelinas [I]. The earlier article emphasized approaches to 
solving potentially pathological sets of stiff ordinary, nonhnear, differential 
equations; the present article emphasizes the systematic determination of the 
sensitivity of those solutions to uncertainties in rate parameters and in initial 
conditions. While the subject of sensitivity analysis has been well known in control 
theory [2], there has been relatively little reduction to practice in the context of 
more general, large scale computational applications. (See also reference [3] for 
a good bibiliograph of work to date.) Two basic methods that have been applied 
are the Fourier amplitude sensitivity test (FAST) by Shuler, er al. [4, 51 and the 
direct method (DM) [2, 31, a version of which is presented here. Both the FAST 
and the DM approaches can yield higher-order sensitivity coefficients; but, to 
date, emphasis has been given primarialy to the linear portions of the theories. 
Both methods are presently at the dawn of large scale application and development, 
and certain elements of each method have yet to be completely understood and 
assimilated. Thus, advancing the state of general understanding and the state of 
specific application of sensitivity analysis methods for dynamic systems is our first 
priority. A detailed view of the computational implementation of the DM is also 
given, bringing out both the advantageous and the disadvantageous factors, as 
they are presently understood. 

In Section 11, the basic development for the DM algorithm is given. In Part A, 
the development of sensitivity equations is sketched. Consideration is given to a 
system of n differential equations with m parameters. For each parameter, y1 
additional differential equations are developed which describe the sensitivity of the 
original system with respect to the chosen parameter. This second set of equations, 
which we call the sensitivity equations, will be solved simultaneously with the 
original system to yield linear sensitivity with respect to the chosen parameter. 

Part B of Section II draws out what we call structural aspects of the actual 
implementation of the algorithm. We speak often in the context of chemical 
kinetics codes, which is where most of our work has been done. However, we believe 
these methods extend beyond this framework. This section discusses the Jacobian 
matrix and its significance in sensitivity analysis. Not only does the matrix directly 
enter into a description of the sensitivity equations, but its exact form will be needed 
in successfully solving certain difficult problems. This is in contrast to using 
numerical approximations of it while solving the differential equation systems. 

Part C of Section II illustrates the evaluation of initial conditions for the variables 
of the sensitivity equations. These conditions vary slightly with respect to the type 
of parameter being studied. 

Part D of Section II describes what we call the total linear sensitivity of the 
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differential equation system under study. A primary purpose of this paper is to 
convey to other potential users an algorithm for generating linear sensitivities zi . 
It is possible in an analogous way to develop differential equations for quadratic 
sensitivities &,/a~. We have not done this because of the high computational cost 
for large problems and because the general problems associated with higher-order 
terms remain an open area for more effective research. However, if one does want 
to calculate quadratic terms, we show how our existing code can be simply modified 
to produce numerical estimates of these quantities. In fact for the purposes of the 
small example of Section III, we have performed this calculation and have provided 
an initial view of how quadratic sensitivities may affect the linear theory. For this 
purpose, Taylor’s theorem is employed with remainder. As such, the error term 
involves the quadratic terms. 

Section III will consider a simple example from atmospheric chemical kinetics. 
Various types of parameters will be discussed including time varying parameters 
which enter in consideration of diurnal problems. 

Section IV describes and interprets numerical results for the selected example. 
In other recent work, Atherton er al. [3] have employed a direct method for 

sensitivity analysis. It is significant to note that their work emphasizes statistical 
averages of sensitivity variables in contrast to the present work which considers 
the variables, per se. It is, of course, evident that approaches based on averaged 
sensitivities require statistical information on the distribution of sensitivity param- 
eters, whereas the present approach does not. Both have merit, for a range of 
needs. 

The work of Atherton, et al. also differs computationally from the present 
approach in a significant way. They solve the kinetics equations first, once and 
for all. This can be done since the kinetics differential equation system is inde- 
pendent of the sensitivity system. Using tabulated values of the kinetic system 
solutions and an interpolation scheme, the sensitivity equations may then be solved 
any number of times. This can be very efficient, but certain precautions are required. 
First, the interpolation approach requires considerable implementation effort 
beyond the basic existing kinetics program. Our method, on the other hand, can 
be readily implemented in such a program. Second, it is not presently known what 
effects interpolation errors may have on the accuracy and stability of the sensitivity 
calculations. Third, for large problems where the kinetic system is rapidly varying 
(e.g., diurnal or otherwise active systems) the mesh size necessary for sufficiently 
accurate interpolation could become prohibitively small, leading to potentially 
huge tabulations and storage demands. This would seem particularly true for 
diurnal problems in which solutions are obtained over very large time scales. 
Furthermore, we feel that the method adopted here could be used in a validation 
procedure to determine the suitability of the interpolation approach. 
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II. BASC THEORY 

A. Development of Variational (Sensitivity) Equations 

Equations (1) below represent a time dependent system of nonlinear ordinary- 
differential equations (ODE) having solutions that are dependent upon certain 
rate parameters c, and initial conditions y,(O). That is, 

3i = .h(Yl T Y2 9..*7 Yn 3 t7 c), i = l,..., n. (1) 

For notational convenience we shah rewrite the right-hand sides of (1) asfp:( y, t, c), 
where y may be thought of as an n-vector ( yJ. The solutions of (1) may be thought 
of as functions of two variables, t, c; that is, yI:(c, t). The initial conditions, yi(O), 
will also be treated henceforth as parameters, c, in yi(c, t). A parameter is called 
sensitive if small changes in its value produce large changes in the solution to 
the problem. A reverse definition can be stated for a nonsensitive parameter. 

We can next introduce n new variables (Z,), which will numerically measure 
the sensitivity of the system (1) with respect to a parameter c. 

Zi = ayilac, i = l,..., n. (2) 

The new variables will be found as the solutions to a new set of n differential 
equations, which we derive below. Actually, the system of differential equations 
for (Zi) will be solved simultaneously with Eqs. (1) in the DM. The equations for 
(Zi) are simply developed from two theorems of the calculus: the chain rule for 
differentiation, and the rule for interchanging the order of differentiation for certain 
mixed partials. We have 

8, = g (Zi) = g (2%) = $ (zg), 

or 

or 

a = ; (fi(Y(C, t), t, 4, 

or finally 

2i = g + jc g Zj 9 i = l,..., n. 
3 

(3) 
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The term, a.$/@, , of Eq. (3) is recognized to be an element of the Jacobian, J, 
of the original ODE system given by Eqs. (1); that is, J is an n x n matrix in which 
the (i,j) element Ji,i, is given by af;,/ayj . In vector notation Eqs. (3) are: 

i=fC+JZ=FL, (4) 

where& is a vector of length n whose components are af;,/ac, and the notation FL 
is introduced for later use. 

It should be noted that, if the parameter c does not appear explicitly in the& 
of (l), then (4) simplifies to 2 = JZ. This may be the case, for example, if the 
parameter c is an initial condition for one of the yi . 

B. Structural Aspects of Solving Sensitivity Systems 

It is a straightforward matter to extend solution algorithms developed for 
Eqs. (1) such that the 2n equations of (1) and (4) may be solved simultaneously, 
in order to provide a sensitivity analysis. These implementations have, in fact, 
been done at LLL for our kinetics codes [6]. 

The extended kinetic-sensitivity system of 2n equations can be viewed as 

FU = 
F =FL’ 

n+1 [ 1 
F a+:! 

(5) 

where Fl , F, ,..., Fn are equal to fi, fi ,..., fn , respectively, of Eqs. (1). These 
upper n elements of F will be denoted by F*. We have introduced F,,,, , Fzn , which 
will be referred to as FL to denote the right-hand sides of the equations for 2, as 
given by Eq. (4) above. 

Since the Jacobian is an important element of implicit ODE solution methods, 
it is well to examine the Jacobian structure of the extended system of 2n equations. 

The Jacobian JZn , for the 2n(y, Z) equations is defined by aF/aX and has a 
particularly simple form: 

Jm = (6) 
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The two diagonal (n x n) blocks are just J, the Jacobian of the original system. 
The block of zeroes in the upper right corner reflects the fact that the original 
system of Eqs. (1) is decoupled from the Zi . This fact, of course, yields a way 
of constructing a more efficient program for solution of the sensitivity problem. 
The solution of the expanded system depends on inversion of Jzn . Because of 
the special structure of Jzn , its inversion need only involve the inversion of J. 

Thejth column of the (n x n) matrix A in Eq. (6) is given by 

Aj = (%/a~j) + (aJ/gtj) Z, (7) 

where we interpret &c/+, to be an it vector whose ith component is (a/ayi)(@/&); 
i.e., the derivative of the ith component of fc with respect to yj . Similarly, we 
interpret (aJ/ayj) as an (n x n) matrix whose (k, I) element is given by a(Jk,,)/i3yj. 

Since the individual parameters c, of the ODE system (1) are to be treated as 
being independent, it is possible to solve for the sensitivity, either one parameter 
at a time or for all parameters c, in a single calculation. This is a problem-dependent 
choice. Either way, the total number of equations to be solved is readily deduced. 
If there are m parameters (cr , cp ,..., c,,) we could have mn new sensitivity equations 
to solve. When we add in the original system of n equations for y(r). we arrive at 
a total of (m + 1) n equations to solve. 

Let us consider for a moment the Jacobian, Jtmtljn , of the total (y, z) parametric 
system. The block structure of Eq. (8) is found convenient. 

J h+1)n = 

-J 00 
A, J 0 
A, 0 J 
A3 0 0 J (8) 

The matrix, block-wise, has as its only nonzero entries the first column and the 
diagonal. As before, the inversion of this matrix only requires the inversion of J, 
an (n x n) matrix. Now for the ath parameter c, , of the set (cr , C~ ,...~ cm) we 
can write for the jth column of A, 

A&j = @JJa~j) + ((a/ayd J) Z, , a! = l,..., m, (9) 

where Z, is the n vector whose kth component is aJ@c,. Notice that ((a/ayj) J) 
does not change with 01. 
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C. Initial Conditions.for the Sensitivity Variables Zi 

Let us determine the initial conditions for the variational quantities, Zi . The 
quantities Zi(0) are determined by the following limits: 

Zi(0) = lim )‘i(’ + A’, O) - Yi(” O) 
de-0 AC 

Two cases now arise: 

Case 1. The parameter c is not an initial condition of one of the yi : clearly, 
yi(c + AC, 0) - ye(c, 0) = 0 ‘f 1 c is not an initial condition. Thus, Zi(0) = 0 for 
all i. 

Case 2. The parameter c is an initial condition for, say, yli. In this case 
Zi(0) = 0 for i # k for the same reasons mentioned above. But, for i = k, 
y,(c + AC, 0) - ydc, 0) = A c, and the limit of Eq. (10) is 1. Thus, if c is an initial 
condition for )‘k , Zi(0) = 0 if i # k and Z,(O) = 1. 

D. Total Sensitivity 

We have seen that, for any particular C~ , IZ new variables Z, ,..., Z, , were 
defined that measure the sensitivity relative to ck . Let us rename these quantities 
Zi,r. We have also seen (in Section B) that, for independent parameters 
Cl , c2 )...) ce ) . . .) c, , the quantities ZiVk can be solved simultaneously (an (m + 1) n 
by (m + 1) n system) or separately (a 2n x 2n system, m times). Separate solution 
has the advantage of less computer storage and less logical complexity. 

Having obtained the solutions for Zi,h, a measure of the total variation, or 
total sensitivity, of yi is given by evaluating1 

A-vi = f Zi,k AC, + O((max Ac,)~), i=l n. ,***, (11) 
h=l 

The possible importance of the higher-order terms has often been acknowledged, 
but a quantitative examination of such terms does not seem to have been made in 
specific applications. We now give a method for calculating and interpreting 
second-order derivatives, by simple modifications to our basic sensitivity code. 
This is done for the purpose of estimating the total error in the linear theory. 
In a later example, we give a numerical illustration of this procedure. 

1 One could evaluate the expectation values of dyi , or their variances. At least two basic factors 
presently recommended the direct consideration of the dyi in chemical kinetics: The statistical 
properties governing c are largely unavailable for important reaction rates. Second, the physical 
modeler is often most concerned with the extreme values that individual yi components may 
assume as new parametric data is incorporated. It is well known that the averaging of dyi or of 
(&)*, may suppress the extreme components. 
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These modifications can be explained best by simply considering a function 
y(c, d, t) of two parameters, c and d, and time 1. We use Taylor’s theorem with 
remainder (see [7], with n = 1) and assume an expansion about the point (cl , d,) 
with t fixed. Letting AC = cp - cr . and letting Ad = d2 - dl gives 

Ay=$Ac+$Ad+ Q, 

where 

Q = ; 2 (Ac)~ + & (Ac)(Ad) + ; g (Ad)2. (13) 

The first partials will be evaluated at (cl, dl), but the second partials are evaluated 
at (cl + p AC, dl + p Ad), where 0 < fl < 1. Recall that, if the second partials 
are evaluated at the correct point on the line segment between the points (cl , dl , t) 
and (c, , d, , t), the expression Q in Eqs. (12) and (13) above, represents the total 
error in the linear theory. 

In Eq. (12) the terms involving first derivatives are denoted by L (for linear). 
The second part is denoted by Q (for quadratic). For purposes of calculation, 
/3 is unknown; what we have done is to generate numerically a first-order approxi- 
mation to the second-order partial derivatives evaluated at (c, , dl), that is at 
/I = 0. Note that we are identifying Q with the total remainder, or error term, in 
the Taylor series, even though we are only estimating this quantity. 

For example, a2y/Md is evaluated in three steps. First, run the code calculating 
ay/ad evaluated at the point c = c1 . Second, run the code calculating +/ad 
evaluated at the point c = c1 + AC. For these two runs store the partials on disk 
or tape. Third, form the numerical approximation to the desired second derivative 
by: 

wad)lel+dc - wwc, 
AC ’ 

The work involved for this type of calculation is tedious. For a system of n 
equations with m parameters one wishes to calculate a2yk/ac, acj , where k = 1,. . . , n 
and&j= I,..., m. 

From calculus, 

azyk/aci ac, = a2y,/acj aci , (14) 

which cuts the work down by almost one half. The number of partials to be cal- 
culated is then m(m + I)/2 for each of the n species; and two runs must be made for 
each partial. 

In what follows, notions are introduced, which should be useful to the user 
in the interpretation of graphical, as well as written, output. We relate relative 
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and absolute errors in y to similar errors in the parameters c. This analysis includes 
the quadratic error terms. Instead of considering y, let us now consider the relative 
change fly/y, corresponding to a relative parameter change k/c. Of course, if 
the value of c is zero, then only absolute changes can be considered. As will be seen 
later, this is the case, for example, in considering the time varying parameters, 
where one evaluates ay/& at E = 0. In the discussion which follows, all parameters 
are constant and nonzero at their expansion point, and the Taylor formula is 
rewritten as 

AY - = $ (L + Q> 
Y 

= ($gc)$+ ($$d)$+$Q. 
(15) 

For ease of explanation, let the coefficients of the linear part be called a, , a, ,..., 
and let the coefficients of the Q part be called b, , b, ,.... In this notation: 

dyza dc+a dd+b 
y ‘c ‘d 1 (4,” + b, (G)(G) + b, (+)t (16) 

The output of the sensitivity code then records a,, a2 ,..., as well as ay/& and 
aylad --. Special procedures are necessary to calculate b, , b, , -1.. Now let 
L rel = U/Y) L and let Qrel = (I/Y) Q. Thus, 

AY/Y = Lrel + Qrel . (17) 

Taking absolute values and using the triangle inequality (I x + y ) < j x I + I y I) 
one has: 

I 4/y I < I -Gel I + I Qre~ I < I L lrel + I Q lre~ (18) 

where 

ILI rel = I ~1 I IAc/c I + I ~2 I I Ad/d I (19) 

and 

I Q Ire1 = I b, I I AC/C I2 + I bz I I AC/C I I Ad/d I + I ba I I Ad/d 12. (20) 

It is natural to say that the theory, or sensitivity, at a point t is linear provided 
that I L IreI is much larger than I Q llel ; and we indeed adopt this point of view. 

The scaling conveniences associated with evaluations at 1 AC/C 1 = 1 and 
I Ad/d I = 1 are evident both with respect to I L Ire1 and I Q Ire1 and with respect 
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to the individual terms in (19) and (20) involving / a, / and 1 bj /. Thus, in later 
graphs we will consider (for / AC/C I = 1 and I Ad/d 1 = 1) 

and 

ILI total = ; I ai I 

IQI total = C I bi iy 2 

(21) 

w 

as well as the individual terms 1 ai / and I bi 1, keeping in mind the linear and 
quadratic scaling properties, respectively, about this specific choice of evaluation 
points. 

III. A SET OF EXAMPLES 

In this section, we present a compact example to illustrate three types of para- 
metric sensitivities: (1) ayJ&, where clc refers to initial conditions of either time 
varying or constant y,‘s; (2) ay,/ack , where ck refers to constant rate coefficients; 
and (3) ay$c, , where ck: refers to time varying rate coefficients. 

The example we have chosen is known as the Chapman mechanism for atmo- 
spheric ozone kinetics. It is composed of four reactions: 

0 + 0, - 03 : k, = 1.63E - 16 

0 + 0, --f 20, : k, = 4.66E - 16 

0, -2 20: k, = 5. E - 11 (daily averaged solar flux) 

0, -% 0 + 0, : ka = 2.5 E - 4 (daily averaged solar flux) 

where k, , k, , k, , and k, are reaction rate coefficients. We will consider cases 
in which k, and k, are constant as well as cases where they are time varying, as 
in diurnal systems. 

The species concentrations (cm-“) are designated as 

YlO> = PI, 
Y3W = D31, 

Y3W = [921, 

We hold [0,] constant and therefore have two differential equations: 

Y,(t) = hh 3 yz 3 ~3 9 k, 9 k, 7 k3 7 k, 3 t), 

9,(t) = fib1 3 Y, 3 YS > kl, k, , ka 7 t), 

(23) 

(24) 
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where (suppressing some arguments) 

fi = ‘hy, + by, - kw, - k,wz = Fl, 

fi = k,y,y, - k,yo:! - k,yz = Fz. 

~0) = 1.E + 6, 

y*(O) = 1X + 12, 

~~(0) = 3.7E + 16. 

(25) 

(26) 

(27) 

(28) 

(29) 

A common quantity to the three sensitivity types to be considered is the 
Jacobian J: 

9 (30) 

or 

C-b - k,y,) 
J = [ W, - by,) 

(k, - ky,) 1 (-by, - kJ - (31) 

Type 1. Sensitivity to Initial Conditions 

A. Parameter c is an Initial Value for Time Varying Species 

Let the initial condition yl(o) have the value c. In this case c does not appear 
explicitly in fi orfi , and fc (see Eq. (4)) is therefore the zero vector. Thus we have: 

with 

If c = yZ(0), we would have 

i = JZ (32) 

Z,(O) = 1, (33) 

Z,(O) = 0. (34) 

Z,(O) = 0, (35) 

Z,(O) = 1. (36) 

To consider the Jacobian, J2,, , recall Eqs. (5)-(9). For the expanded system F3 
and F4 of Eq. (5) are 

Fs = -(k, y, + k, YJ Z, + @a - k,y,) Z, (37) 

Fa = (k,y, - koz) & - Oh - ka) -G . (38) 
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The matrix A in the lower left corner of Jzn is 

8F3/& 
A = [aF,iB, 

6F,/ay,, = (--k?Z,) 1 [ (-k,Z,) 
aF,/ay, (-k2-G) 1 (--kZ,) * 

B. Parameter c is an Initial Condition for Constant Species 

Let c = y3 . In this case c appears explicitly in fi and fi . Thus we have 

i=fc+JZ=FL, 

with 
Z,(O) = Z,(O) = 0, 

and fc = {(f&}, i = 1,2, a vector of length two. In the present case 

(feh = ahlac = way, , 
and 

(feh = 2b - k, y, 

(feh = by, . 

Again using Eq. (5) 

and 
4 = -WI YS + k, Y,) G + (k, - k, y,) Z, + Ws - ky,), 

F, = (k, ys - k, y,) Z, - (k, y, + kd Zs + by, - 

In this case we have 

-KG + kd 
A = [-(k,Z, - k,) 

(--k&) 1 (-kpZ,) ’ (46) 

Type 2. Sensitivity to Constant Rate Coeficients 

Using Eq. (4) for c = kl , I = l,..., 4, we have the sensitivity equations 

z=fk,+ JZ I = l,..., 4, 

where 

and 

PI = (ww + (JZ), , I = l,..., 4, 

2, = (afzk) + (JZ), , I = I,..., 4. 

(39) 

(40) 

(41) 

(42) 

(43) 

(44 

(45) 

(47) 

(48) 

(49) 
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The initial conditions on Z are 

Z,(O) = Z,(O) = 0. (50) 

To give an example of the structure of the matrix A in the lower left hand corner 
of Jzn , we will let c = k, : 

(-WA 4ks-G - 1) 
A = [(-kpZI) -(k,Z, + 1) * I (51) 

Type 3. Sensitivity to Time Varying Rate Coeficients 

An important problem in atmospheric kinetics is to include diurnal time 
variations in the photodissociation rates k, and k, . This is analogous to 
Type 2, above. In the present case, introducing Z = (+)y(kl(t) + l gl(t), 
Y, , Y, ,..., yn , t)l,=, we have 

with 
2 = f&(t) + J-Z I = 3, 4, (52) 

Z,(O) = Z,(O) = 0. (53) 

The functional derivative&,) can be evaluated as in variational calculus by intro- 
ducing the quantity Egl(t), where E is a real number and gl(t) is a function oft that 
measures the uncertainty in k,(t). 

Liz(t) = WWf(kz(t) + dt), ~1 , ~z v..., in , t)l,=, . 

It follows from (54), (25), and (26) that 

(54) 

“f&t) = (2g3t)y3), 

h,(t) = (-;$ ;:,. 

(55) 

(56) 

Letting c = k4(t), the structure of the matrix A in Jzn is 

(-WA -0GG - g&N 
A = k-ksz,) -@s-G + gdf)) ’ 1 (57) 

For diurnal applications, a useful (but not exact) representation of k,(t) for 
1 = 3, 4 is 

k,(t) = exp -[z&in wt], for sin wt > 0, I = 3, 4 (58) 

k,(t) = 0, for sin wt < 0, I = 3, 4. (59) 
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II' f 27T ( 1 
86400 set/day 1 (60) 

Zr = - In k,(noon). (61) 

The examples below employ the numerical values k,(noon) = 1.5 E-10 and 
k,(noon) = 5.E-4 which can be taken crudely to typify physical conditions at an 
altitude of approximately 35 km at 45” N latitude at the time of autumn equinox. 
One may take gl(t) to be 

k(t, Moon)) 
X,(noon) ’ 

Thus, for our example 

gdt) = (kl(t)lk,(noon))/sin(wt), 1 = 3,4. (62) 

With these choices one should observe that the change in y due to uncertainty in 
k,(noon) is given by dy(t) = Z(t) c dk,(noon). 

With the information above, we have found it to be essentially the same task 
to solve the sensitivity system for (y(t), Z(t)), in fully automated fashion, as it was 
to solve just the chemical kinetic system for (y(t)). The results of such calculations 
are presented in the next section. 

IV. RESULTS 

The time evolution of the concentrations [0] and [O,] are shown in Figs. 1 and 2, 
respectively, for two different types of calculation. The constant photodissociation 
rates used for k3 and k, in the “constant rates” calculation are the appropriate 
daily averaged rates corresponding to the time varying diurnal photodissociation 
rates k,(t) and k4(f) (see Eqs. (60)-(64) used in the “diurnal rates” calculation. It 

m- log 

'5 Diurnal rates 

;; 
lo8 

lo7 
10-2 10-l I 10 lo2 lo3 IO4 

Time - hrs. 

FIG. 1. Time evolution of O(cm-%) for constant (daily averaged) rates and for diurnal rates. 



ODE SENSITIVITY ANALYSIS 137 

Diurnal rates 

Constant rates 

1o12 'lQlllil' ' 1111111' 1 f 
10-Z 10-l 1 10 102 103 lo4 

Time - hrs. Time - hrs. 

FIG. 2. Time evolution of 0,(cm-3) for constant (daily averaged) rates and for diurnal rates. 

is seen that [0,] does not respond instantaneously to solar flux variations and that 
the daily averaged photodissociation rates eventually yield the same asymptotic 
solutions for [0,] as in the more general diurnal calculations. Prior to asymptotic 
times significant discrepancies occur in [0,] due to the distinctly different kinetic 
sensitivities of the constant versus diurnal rate mechanisms. For the same reason 
discrepancies occur at all times for [0], since it responds instantaneously to solar 
flux variations throughout the problem history. In such cases there appears to be 
little, or no, mechanistic relevance associated with replacing instantaneous photo- 
dissociation rates by constant rates. These points tend to be important because 
of the widespread use of constant radiative rates in atmospheric applications. The 
remainder of this article presents detailed sensitivity results in support of these 
observations. 

The sensitivities associated with the constant rate calculations are presented 
in Figs. 3-8. In Figs. 3 and 4 are shown plots of 1 L Itotal and 1 Q Itotal (of Eqs. (21) 

FIG. 3. Linear and quadratic sensitivities for 1 dOjO 1 with all 1 AC/C 1 = 1 in constant rate 
calculations. 
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FIG. 4. Linear and quadratic sensitivities for j dO,/O, 1 with all I Ac,‘c 1 
calculations. 
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FIG. 5. Linear and quadratic initial condition sensitivity terms for 1 do/O I in constant rate 
calculations. 
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rate calculations. 
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FIG. 7. Linear and quadratic rate sensitivity terms for I do/O I in constant rate calculations. 
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FIG. 8. Linear and quadratic rate sensitivity terms for I dOI/Oa I in constant rate calculations. 

and (22)) as well as a term called 1 Q lcroB8 . The data for 1 Q ICroSS consists only of 
the second-order “cross terms” in 1 Q Itotal that are dependent on two different 
parameters. It is evident that the second-order terms are significant at nearly all 
times for the sensitivity of [0] with the 1 AC/C l’s equal to unity, whereas it takes 
nearly a thousand hours for this to be true in the case of [O,]. However, it is 
important to recall the scaling of the quadratic terms relative to the linear terms 
for any other values of AC/C. For example, if I AC/C I = 0.1 for all parameters, 
the quadratic sensitivity drops to 0.01 1 Q Itotal , while the linear sensitivity only 
drops to 0.1 1 L Itotal. In the other extreme, if I AC/C I = 10, the quadratic sensi- 
tivity is 100 I Q (total , while the linear sensitivity is 10 1 L Itotal . From this point 
of view, if 1 AC/C 1 is larger than 1, then it is all the more important that the user 
have a knowledge of the error Q in order to validate his linear results. Also recall 
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that the choice of viewing the absolute magnitudes of the sensitivities simply gives 
a worst case analysis. Nevertheless, the first quantitative look at second-order 
sensitivity terms tends to confirm earlier intuitions concerning the possible impor- 
tance of higher-order sensitivity terms in physically interesting time regimes and 
uncertainty ranges. 

Figures 5-8 are based on a further breakdown of 1 L Itotal and 1 Q /tots1 . Namely, 
j L /total is composed of two types of terms. One is the sum / L /init = x I ai 1, 
where the sum is taken over terms only involving initial conditions. The other is 
a sum I L lk = C / ai 1, where the terms only involve rate coefficients. 

The further breakdown of I Q Itotal can be written 

I Q Itotal = I Q /init + l Q Ik + l Q Icross . (63) 

The data in Figs. 5-8 for the individual linear terms, for I L jrnrt and / L I,,. , and 
for 1 Q linit and I Q Ik is now self evident. Briefly, in Fig. 5, for 1 00/O 1 the initial 
value of [0] is seen not to be a factor at times greater than lO-5 hr, whereas the 
initial value of [0,] is a sensitive parameter from lO-6 hr to late times of 102-lo3 hr. 
The initial value of [0,] is seen to be a sensitive parameter from lo-” hr to late 
times. The corresponding quadratic terms I Q [init, are seen to be sensitive param- 
eters at times later than lO-4 hr for all / AC/C I greater than approximately 0.25 
(recall the quadratic and linear scaling). In Fig. 6; for I AO,/O, I ; the initial value 
of [0] never appears to be a factor, while the initial value of [0,] is a sensitive 
parameter out to approximately lo2 hr. The initial value of [0,] assumes 
importance, starting at about lo2 hr, onward. The corresponding quadratic 
terms, I Q lrnrt, for I AC/C I = 1 start to become significant only at times greater 
than lo3 hr. 

Following the same lines of observation, analogous interpretations can be made 
of the rate coefficient sensitivities in Figs. 7 and 8 for / AO/O ] and I AOJO, I. 
Without belaboring that portion of the discussion further, it is very interesting to 
note that asymptotic limits of 0.5 were approached for all of the individual linear 
sensitivity coefficients I a, 1, for both I 00/O I and I AO,/O, /. That this should be 
true was indeed verified by an independent algebraic solution of the appropriate 
steady stare sensitivity equations. This indicates that even the very weak rates in 
a system eventually assume sensitivity importance, and the modeller should be 
aware of those time scales. 

Finally, sensitivities associated with the time varying diurnal rate calculations 
(for k3(f) and k,(t) under Type 3, above) were computed. Recall that the functional 
derivatives used in sensitivity analysis of time dependent parameters are dependent 
upon the functions gl(t) (see Eqs. 52-56). Thus, a one-to-one comparison of diurnal 
sensitivity results to the constant rate results can only be attempted for parameters 
that do not vary in time. These are the initial conditions and the rates k, and k, . 
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FIG. 9. Linear sensitivity to k, and k, for ( dOi0 I in constant rate and in diurnal calculations. 
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Linear sensitivity to k, and kz for 1 403/03 I in constant rate and in diurnal cal- 

Inasmuch as the reaction rate sensitivities are normally the most interesting, 
Figs. 9 and 10 show the linear sensitivities of [0] and [0,] to k, and k, for both the 
constant rate and diurnal calculations. Clearly, the mechanistic sensitivities 
are qualitatively disparate after about IO2 hr, and the approach to asymptotic 
conditions occurs at significantly later times for the diurnal calculations than for 
the constant rate calculations. (It gets very expensive to run diurnal calculations 
to problem times exceeding a few thousand hours.) The sensitivity of [0] to the 
time varying rates k3(f) and k4(t) are of the same saw tooth nature as [0] itself 
(as shown in Fig. 1). That is, sizable sensitivities occur during daylight hours, 
and negligible sensitivities to k3(t) and k4(f) occur for 1 do/O 1 at night. 

Clearly, this alternating sensitivity encountered in the diurnal mechanism 
generates the differing dependencies on the legitimately constant rate coefficients 
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k1 and k, for 1 00,/O, 1, which does not respond instantaneously, as well as for 
1 do/O 1, which does respond instantaneously to solar flux variations. The signi- 
ficance of these results undoubtedly bears heavily upon more complex kinetic 
mechanisms in which numerous free radicals and reactive intermediates may be 
important. Results presented in an earlier study of a complex diurnal atmospheric 
system by Gelinas [8] tend to be consistent with the detailed, but simplified, 
sensitivity results of the present article. 

The computer code used for the calculations described here uses a variable-step 
variable-order stiff ODE solver called EPISODE [9, IO]. 

v. SUMMARY 

The DM approach taken to sensitivity analysis in this paper is but one of a 
few approaches that are emerging into current practice. Each approach has its 
individual mertis and its commonalities with other approaches. Accordingly, the 
choice of a particular method for specific examples tends to be very much a 
problem-dependent matter at this time. 

In this article, a number of factors have been emphasized. Basically, we have 
written for the scientific practitioner. The uncertainties, dy, , are viewed simply 
as random variables rather than dealing with the expectation values (dy,) and 
((dyi)z). All are useful quantities and are complementary in applications. Our 
particular choice is useful for the types of questions in physical modeling that 
require worst case estimates of sensitivities to uncertain reaction rate processes 
with unknown statistical properties. Indeed, by the time statistical properties 
of rate data becomes available some of the most pressing scientific needs for sensi- 
tivity analysis may have diminished. 

We have also included computational information to potential users of this 
method that will allow them to extend their existing kinetics codes to solve for 
sensitivity variables simultaneously with species concentrations. This method has 
been entirely automated to the point that the user simply inputs his reaction 
numbers and initial conditions. The fully general, nonlinear (in J+), coupled species 
and sensitivity equation compilation and solution is automatically performed 
without further user intervention. A particularly potent feature is that sensitivities 
to both constant and time varying parameters is readily performed continuously 
for all times t, in a solution history. Second-order terms also can be readily 
evaluated in the present sensitivity analysis, although it is a tedious process. 

An illustrative example of the Chapman kinetic mechanism for atmospheric 
ozone formation has been presented. Two basic cases were solved: (1) photo- 
dissociation rates were held constant at their appropriate daily averaged values, 
and (2) diurnally varying photodissociation rates were used. The results of these 
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calculations show the sensitivity distinctions between diurnal driving mechanisms 
and constant, daily averaged kinetic mechanisms. In addition to the transient 
discrepancies between the two types of calculations, the approach to asymptotic 
states was also quite different for the two types of calculations, clearly implying 
a need for closer examination of constant solar flux approximations that are 
commonly used in atmospheric applications. The times at which the very weak 
reaction processes became significant in these solution histories was also quite 
evident. 

Finally, the quantitative comparison of second-order terms to the linear sensi- 
tivity terms strongly indicates the need for more higher-order analysis in the future. 
In the present work, the very reactive specie, 0, was found to be most subject to 
higher-order effects and to diurnal deviations from constant rate mechanistics. 
There is a clear suggestion from these results that the very reactive species, such 
as free radicals, should be treated with due consideration of their mechanistic 
impact on the total system. 
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